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Abstract

In this paper, a shrinking projection algorithm based on the extragradient iteration method for
finding a common element of the set of common fixed points of a finite family of asymptotically
nonexpansive mappings and a generalized nonexpansive set-valued mapping and the set of
solutions of equilibrium problem for pseudomonotone and Lipschitz-type continuous bifunctions
is introduced and investigated in Hilbert spaces. Moreover, the strong convergence of the
sequence generated by the proposed algorithm is derived under some suitable assumptions.
These results are new and develop some recent results in this field.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A mapping
T : C → C is called:

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C,

(ii) quasi-nonexpansive if the set F (T ) of fixed points of T is nonempty and ‖Tx−Tp‖ ≤ ‖x−p‖,
for all x ∈ C and y ∈ F (T ),

(iii) asymptotically nonexpansive if there exists a sequence {kn} of real numbers with kn ≥ 1 and
limn→∞ kn = 1 such that for all x, y ∈ C and all n ≥ 1 we have

‖Tnx− Tny‖ ≤ kn‖x− y‖.

This class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [16] in
1972. They proved that, if C is a nonempty bounded closed convex subset of a uniformly convex
Banach space X, then every asymptotically nonexpansive self-mapping T of C has a fixed point.
Moreover, the fixed points set F (T ) of T is closed and convex.

A subset C ⊂ H is called proximal if for each x ∈ H, there exists an element y ∈ C such that

‖ x− y ‖= dist(x,C) = inf{‖ x− z ‖: z ∈ C}.

We denote by CB(C),K(C) and P (C) the collection of all nonempty closed bounded subsets,
nonempty compact subsets, and nonempty proximal bounded subsets of C respectively. The Haus-
dorff metric h on CB(H) is defined by

h(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},
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for all A,B ∈ CB(H).
Let T : H → 2H be a multivalued mapping. An element x ∈ H is said to be a fixed point of T ,
if x ∈ Tx. A multivalued mapping T : H → CB(H) is called (i) nonexpansive if h(Tx, Ty) ≤
‖x − y‖, x, y ∈ H,(ii) quasi-nonexpansive if F (T ) 6= ∅ and h(Tx, Tp) ≤‖ x − p ‖ for all x ∈ H
and all p ∈ F (T ). Recently, J.Garcia-Falset, E. Llorens-Fuster and T. Suzuki [15], introduced a
new generalization of the concept of a nonexpansive single valued mapping which called condition
(E). Very recently, Abkar and Eslamian [1], modify the condition (E) for multivalued mappings as
follows:

Definition 1.1. A multivalued mapping T : X → CB(X) is said to satisfy condition (Eµ) provided
that

dist(x, Ty) ≤ µdist(x, Tx) + ‖x− y‖, x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

Recently, Eslamian and Abkar proved a common fixed point theorem for a commuting pair
of mappings, including a finite family of asymptotically nonexpansive mapping and a generalized
nonexpansive multivalued mapping in a uniformly convex Banach space (see [2]).
Iterative methods for approximating fixed point points of nonlinear mappings and solutions to
variational inequality have recently been studied by many authors. For details, we can refer to
[6, 8, 13, 17, 18, 22, 24, 25]. In an infinite dimensional Hilbert space, Mann iteration processes
have only weak convergence, in general, even for nonexpansive mappings. In order to obtain a
strong convergence theorem for the Mann iterative process to nonexpansive mappings, Nakajo and
Takahashi [23], used two closed convex sets that are created in order to form the sequence via
metric projection, so that the strong convergence is guaranteed. Later on, it was often referred to
as the hybrid algorithm or the CQ method. After that, the hybrid algorithm have been studied
extensively by many authors, particularly, Martinez-Yanes and Xu [20], extended some results of
Nakajo and Takahashi [23] to the Ishikawa iteration process. Very recently, Takahashi, Takeuchi
and Kubota [28] introduced the shrinking projection method which just involved one closed convex
set for nonexpansive mappings in a Hilbert space.

Let f be a bifunction from C × C into R, such that f(x, x) = 0 for all x ∈ C. The Equilibrium
problem for f : C × C → R is to find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C.

The set of solutions is denoted by Sol(f, C). Such problems arise frequently in mathematics,
physics, engineering, game theory, transportation, electricity market, economics and network. Due
to importance of the solutions of such problems, many researchers are working in this area and
studying on the existence of the solutions of such problems. For example, see; [7, 10, 14]. On the
other hand, Tada and Takahashi [26] introduced the CQ method for finding a common element of
the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping
T in a Hilbert space H. In recent years, the problem to find a common point of the solution set of
equilibrium problem and the set of fixed points of a nonexpansive mapping becomes an attractive
field for many researchers (see [9, 12, 21, 26, 27, 28]). We recall the following well-known definitions.
A bifunction f : C×C → R is said to be (i) strongly monotone on C with α > 0 iff f(x, y)+f(y, x) ≤
−α‖x − y‖2, ∀x, y ∈ C; (ii) monotone on C iff f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C; (iii)
psedomonotone on C iff f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C; (iv) Lipschitz-type continuous
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on C with constants c1 > 0 and c2 > 0 iff f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, for
all x, y, z ∈ C.

If f(x, y) = 〈Fx, y − x〉 for every x, y ∈ C, where F is a mapping from C into H, then the
equilibrium problem becomes the classical variational inequality problem which is formulated as
finding a point x∗ ∈ C such that

〈Fx∗, y − x∗〉 ≥ 0, ∀y ∈ C.

The set of solutions of this problem is denoted by V I(F,C). Recently, P.N. Anh [4, 5], consider
the CQ method for finding a common element of the set of solutions of monotone, lipschitz-type
continuous equilibrium problem and the set of fixed points of a nonexpansive mapping T in a Hilbert
space H.

Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let
f : C × C → R be a pseudomonotone and Lipschitz-type continuous bifunction with constants c1
and c2. Suppose that f(x, .) is convex and subdifferentiable on C for all x ∈ C. Let, T : C → C
be a nonexpansive mapping. Assume that F (T )

⋂
Sol(f, C) 6= ∅. Let {xn} and {un} be sequences

generated initially by an arbitrary element x0 ∈ C and then by

wn = argmin{λn f(xn, w) + 1
2‖w − xn‖

2 : w ∈ C},
un = argmin{λn f(wn, u) + 1

2‖u− xn‖
2 : u ∈ C},

yn = αnxn + (1− αn)Tun, ∀n ≥ 0,

Cn = {u ∈ C : ‖yn − u‖ ≤ ‖xn − u‖},
Qn = {u ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩QCn

x0.

Assume that the control sequences {αn}, and {λn} satisfy the following conditions:

(i) {αn} ⊂ [a, 1) ⊂ (0, 1),

(ii) {λn} ⊂ [a, b] ⊂ (0,min{ 1
2c1
, 1
2c2
}).

Then the sequences {un} and {xn} converge strongly to PF (T )
⋂
Sol(f,C)x0.

In this paper, we introduce a shrinking projection algorithm based on the extragradient iteration
method for finding a common element of the set of fixed points of a finite family of asymptotically
nonexpansive mappings and a generalized nonexpansive multivalued mapping and the set of so-
lutions of equilibrium problems for pseudomonotone and Lipschitz-type continuous bifunctions in
a Hilbert space. Moreover, the strong convergence of the sequence generated by the proposed
algorithm is derived under some suitable assumptions.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let C be a nonempty closed
convex subset of H. Let the symbols → and ⇀ denote strong and weak convergence, respectively.
Let C be a closed convex subset of a Hilbert space H. For every point x ∈ H, there exists a unique
nearest point in C, denoted by PCx such that

‖x− PCx‖ ≤ ‖x− y‖, y ∈ C.
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The mapping PC is called the metric projection of H onto C.

Lemma 2.1. ([28]) Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C, then
z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Lemma 2.2. ([23]) Let C be a closed convex subset of H. Then for all x ∈ H and y ∈ C we have

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2.

Lemma 2.3. [12] Let H be a Hilbert space and xi ∈ H, (1 ≤ i ≤ m). Then for any given
{λi}mi=1 ⊂]0, 1[ with

∑m
i=1 λi = 1 and for any positive integer k, j with 1 ≤ k < j ≤ m,

‖
m∑
i=1

λixi‖2 ≤
m∑
i=1

λi‖xi‖2 − λkλj‖xk − xj‖2.

Lemma 2.4. [3, 11]Let C be a closed convex subset of a real Hilbert space H. Let T : C → CB(C)
be a quasi-nonexpansive multivalued mapping. If F (T ) 6= ∅, and T (p) = {p} for all p ∈ F (T ).
Then F (T ) is closed and convex.

Lemma 2.5. [5] Let C be a nonempty closed convex subset of a real Hilbert spaces H and let
f : C ×C → R be a psedumonotone, and Lipschitz-type continuous bifunction. For each x ∈ C, let
f(x, .) be convex and subdifferentiable on C. Let {xn}, {zn}, and {wn} be sequences generated by
x0 ∈ C and by {

wn = argmin{λn f(xn, w) + 1
2‖w − xn‖

2 : w ∈ C},
zn = argmin{λn f(wn, z) + 1

2‖z − xn‖
2 : z ∈ C}.

Then for each x? ∈ Sol(f, C),

‖zn − x?‖2 ≤ ‖xn − x?‖2 − (1− 2λn c1)‖xn − wn‖2 − (1− 2λn c2)‖wn − zn‖2, ∀n ≥ 0.

3 Main result

Now, we are in a position to give our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let
f : C × C → R be a pseudomonotone and Lipschitz-type continuous bifunction. Suppose that
f(x, .) is convex and subdifferentiable on C for all x ∈ C. Let, T : C → CB(C) be a quasi-
nonexpansive multivalued mappings satisfying the condition (E) and Si : C → C, (i = 1, 2, ...,m),
be a finite family of asymptotically nonexpansive mappings with sequence {kn,i} ⊂ [1,∞) such that
kn → 1, where kn = max{kn,i; 1 ≤ i ≤ m}. Assume that F =

⋂m
i=1 F (Si)

⋂
F (T )

⋂
Sol(f, C) 6= ∅

and T (p) = {p} for each p ∈ F . For C0 = C, let {xn} be sequence generated initially by an arbitrary
element x0 ∈ C and then by

wn = argmin{λn f(xn, w) + 1
2‖w − xn‖

2 : w ∈ C},
un = argmin{λn f(wn, u) + 1

2‖u− xn‖
2 : u ∈ C},

yn = αnun + βnzn + γn,1S
n
1 un + ...+ γn,mS

n
mun, ∀n ≥ 0,

Cn+1 = {u ∈ Cn : ‖yn − u‖2 ≤ ‖xn − u‖2 + (k2n − 1)ηn},
xn+1 = PCn+1x0
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where zn ∈ Tun, and ηn = sup{‖xn − u‖2 : u ∈ F} < ∞. Assume that the control sequences
{αn}, {βn}, {γn,i} and {λn} satisfy the following conditions:

(i) {αn}, {βn}, {γn,i} ⊂ [l, 1) ⊂ (0, 1), αn + βn +
∑m
i=1 γn,i = 1 (i = 1, 2, · · · ,m),

(ii) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2}.

Then the sequence {xn} converges strongly to PFx0.

Proof. We observe that Cn is closed and convex, (see [20]). To show that F ⊂ Cn for all n ≥ 0,
take q ∈ F . By Lemma 2.5 we have

‖un − q‖ ≤ ‖xn − q‖.

Since T is quasi-nonexpansive and Tq = {q}, we have

‖zn − q‖ = dist(zn, T q) ≤ h(Tun, T q) ≤ ‖un − q‖.

Also, from Lemma 2.5, we have

‖un − q‖2 ≤ ‖xn − q‖2 − (1− 2λn c1)‖xn − wn‖2 − (1− 2λn c2)‖wn − un‖2.

Now applying Lemma 2.3 and our assumption we have that

‖yn − q‖2 = ‖αnun + βnzn + γn,1S
n
1 un + ...+ γn,mS

n
mun − q‖2

≤ αn‖un − q‖2 + βn‖zn − q‖2 + γn,1‖Sn1 un − q‖2 + ...+ γn,m‖Snmun − q‖2

− αnβn‖zn − un‖2 − αnγn,i‖Sni un − un‖2

≤ αn‖xn − q‖2 + γn,1k
2
n‖un − q‖2 + ...+ γn,mk

2
n‖un − q‖2

− αnβn‖zn − un‖2 − αnγn,i‖Sni un − un‖2

− αn(1− 2λn c1)‖xn − wn‖2 − αn(1− 2λn c2)‖wn − un‖2

≤ (1 + (k2n − 1))‖xn − q‖2 − αnβn‖zn − un‖2 − αnγn,i‖Sni un − un‖2

− αn(1− 2λn c1)‖xn − wn‖2 − αn(1− 2λn c2)‖wn − un‖2.

(1)

Therefore ‖yn − q‖2 ≤ (1 + (k2n − 1))‖xn − q‖2, and hence q ∈ Cn, which implies that

F =

m⋂
i=1

F (Si)
⋂
F (T )

⋂
Sol(f, C) ⊂ Cn, ∀n ≥ 0.

Now we show that limn→∞ ‖xn−x0‖ exists. Put w = PFx0 (we note that F is closed and convex).
From w ∈ F ⊂ Cn and xn = PCnx0 for all n ≥ 0, we get

‖xn − x0‖ ≤ ‖w − x0‖.

Also from xn = PCn
x0 and xn+1 ∈ Cn+1 ⊂ Cn we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖.
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It follows that the sequence {xn} is bounded and nondecreasing. Hence limn→∞ ‖xn − x0‖ exists.
We show that limn→∞ xn = x∗ ∈ C. For m > n we have xm = PCm

x0 ∈ Cm ⊂ Cn. Now by applying
Lemma 2.2 we have

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2.
Since limn→∞ ‖xn − x0‖ exists, it follows that {xn} is a Cauchy sequence, and hence there exists
x∗ ∈ C such that limn→∞ xn = x∗. Putting m = n+ 1, in the above inequality we have

lim
n→∞

‖xn+1 − xn‖ = 0. (2)

In view of xn+1 = PCn+1
x1 ∈ Cn+1, we see that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + (k2n − 1)ηn.

It follows that limn→∞ ‖yn−xn+1‖ = 0. This implies that limn→∞ yn = x∗. Observing (1) and our
assumption, we have

l2‖un − zn‖2 ≤ αnβn‖un − zn‖2 ≤ k2n‖xn − q‖2 − ‖yn − q‖2.

Since limn→∞ xn = limn→∞ yn = x∗ and limn→∞ kn = 1, we obtain that limn→∞ ‖un − zn‖ = 0,
thus

lim
n→∞

dist(un, Tun) ≤ lim
n→∞

‖un − zn‖ = 0. (3)

Using a similar method we obtain that

lim
n→∞

‖un − Sni un‖ = lim
n→∞

‖un − wn‖ = lim
n→∞

‖xn − wn‖ = 0 (4)

From (4) and inequality ‖xn − un‖ ≤ ‖xn − wn‖+ ‖wn − un‖ we obtain

lim
n→∞

‖xn − un‖ = 0. (5)

Since limn→∞ xn = x∗ and limn→∞ ‖xn − un‖ = 0, we have un → x∗ as n→∞. Applying (2) and
(5) we get

‖un − un+1‖ ≤ ‖un+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − un‖ → 0 as n→∞. (6)

From (4) and (6) for each i ∈ {1, 2, ...,m} we have

‖un+1 − Sni un+1‖ ≤ ‖un+1 − un‖+ ‖un − Sni un‖+ ‖Sni un − Sni un+1‖

≤ ‖un+1 − un‖+ ‖un − Sni un‖+ kn‖un − un+1‖ → 0 as n→∞,

hence

‖un+1 − Siun+1‖ ≤ ‖un+1 − Sn+1
i un+1‖+ ‖Sn+1

i un+1 − Siun+1‖

≤ ‖un+1 − Sn+1
i un+1‖+ k1‖Sni un+1 − un+1‖ → 0 as n→∞.

This implies that
lim
n→∞

‖un − Siun‖ = 0; (i = 1, 2, · · · ,m). (7)

We observe that x∗ ∈
⋂m
i=1 F (Si). Indeed,
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‖x∗ − Six∗‖ ≤ ‖x∗ − un‖+ ‖un − Siun‖+ ‖Siun − Six∗‖

≤ (k1 + 1)‖x∗ − un‖+ ‖un − Siun‖ → 0 as n→∞,

which implies that x∗ = Six
∗. Also we have x∗ ∈ F (T ). Indeed,

dist(x∗, Tx∗) ≤ ‖x∗ − un‖+ dist(un, Tx
∗)

≤ 2‖x∗ − un‖+ µdist(un, Tun)→ 0 as n→∞,

hence x∗ ∈ F (T ). Applying (4) and (5) we get that x∗ ∈ Sol(f, C), (for details see [5]). Hence
x∗ ∈ F . Now we show that x∗ = PFx0. Since xn = PCn

x0, by Lemma 2.1 we have

〈z − xn, x0 − xn〉 ≤ 0, ∀z ∈ Cn.

Since x∗ ∈ F ⊂ Cn we get
〈z − x∗, x0 − x∗〉 ≤ 0, ∀z ∈ F .

Now by Lemma 2.1 we obtain that x∗ = PFx0. q.e.d.

Now we remove the restriction T (p) = {p} for all p ∈ F (T ). Let T : C → P (C) be a multivalued
mapping and

PT (x) = {y ∈ Tx : ‖x− y‖ = dist(x, Tx)}.

We have F (T ) = F (PT ). Indeed, if p ∈ F (T ) then PT (p) = {p}, hence p ∈ F (PT ), on the other
hand if p ∈ F (PT ), since PT (p) ⊂ Tp we have p ∈ F (T ). By substituting T by PT , and using a
similar argument as in the proof of Theorem 3.1 we obtain the following result.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let
f : C×C → R be a pseudomonotone and Lipschitz-type continuous bifunction. Suppose that f(x, .)
is convex and subdifferentiable on C for all x ∈ C. Let, T : C → P (C) be a multivalued mapping
such that PT is quasi-nonexpansive and satisfy the condition (E) and Si : C → C, (i = 1, 2, ...,m),
be a finite family of asymptotically nonexpansive mappings with sequence {kn,i} ⊂ [1,∞) such that
kn → 1, where kn = max{kn,i; 1 ≤ i ≤ m}. Assume that F =

⋂m
i=1 F (Si)

⋂
F (T )

⋂
Sol(f, C) 6= ∅.

For C0 = C, let {xn} be sequence generated initially by an arbitrary element x0 ∈ C and then by

wn = argmin{λn f(xn, w) + 1
2‖w − xn‖

2 : w ∈ C},
un = argmin{λn f(wn, u) + 1

2‖u− xn‖
2 : u ∈ C},

yn = αnun + βnzn + γn,1S
n
1 un + ...+ γn,mS

n
mun, ∀n ≥ 0,

Cn+1 = {u ∈ Cn : ‖yn − u‖2 ≤ ‖xn − u‖2 + (k2n − 1)ηn},
xn+1 = PCn+1x0

where zn ∈ PT (un), and ηn = sup{‖xn − u‖2 : u ∈ F} < ∞. Assume that the control sequences
{αn}, {βn}, {γn,i} and {λn} satisfy the following conditions:

(i) {αn}, {βn}, {γn,i} ⊂ [l, 1) ⊂ (0, 1), αn + βn +
∑m
i=1 γn,i = 1 (i = 1, 2, · · · ,m),

(ii) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2}.

Then the sequences {un} and {xn} converge strongly to PFx0.
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As a direct consequence of Theorem 3.1 we obtain the following convergence theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let F
be a function from C to H such that F is monotone and L- Lipschitz continuous on C. Let,
T : C → CB(C) be a quasi-nonexpansive multivalued mappings satisfying the condition (E) and
Si : C → C, (i = 1, 2, ...,m), be a finite family of asymptotically nonexpansive mappings with
sequence {kn,i} ⊂ [1,∞) such that kn → 1, where kn = max{kn,i; 1 ≤ i ≤ m}. Assume that
F =

⋂m
i=1 F (Si)

⋂
F (T )

⋂
V I(F,C) 6= ∅ and T (p) = {p} for each p ∈ F . For C0 = C, let {xn} be

sequence generated initially by an arbitrary element x0 ∈ C and then by

wn = PC(xn − λnF (xn)),

un = PC(xn − λnF (wn)),

yn = αnun + βnzn + γn,1S
n
1 un + ...+ γn,mS

n
mun, ∀n ≥ 0,

Cn+1 = {u ∈ Cn : ‖yn − u‖2 ≤ ‖xn − u‖2 + (k2n − 1)ηn},
xn+1 = PCn+1

x0

where zn ∈ Tun, and ηn = sup{‖xn − u‖2 : u ∈ F} < ∞. Assume that the control sequences
{αn}, {βn}, {γn,i} and {λn} satisfy the following conditions:

(i) {αn}, {βn}, {γn,i} ⊂ [l, 1) ⊂ (0, 1), αn + βn +
∑m
i=1 γn,i = 1 (i = 1, 2, · · · ,m),

(ii) {λn} ⊂ [a, b] ⊂ (0, 1
L ).

Then the sequences {un} and {xn} converge strongly to PFx0.

Proof. Putting f(x, y) = 〈F (x), y − x〉, we have that

argmin{λn f(xn, y) +
1

2
‖y − xn‖2 : y ∈ C} = PC(xn − λnF (xn)).

Also we have

f(x, y) + f(y, z)− f(x, z) = 〈F (x)− F (y), y − z〉, x, y, z ∈ C.

Since F is a L-Lipshchitz continuous on C we get that

|〈F (x)− F (y), y − z〉| ≤ L‖x− y‖‖y − z‖ ≤ L

2
(‖x− y‖2 + ‖y − z‖2),

hence f satisfies Lischiptz-type continuous condition with c1 = c2 = L
2 . Now, applying Theorem

3.1, we obtain the desired result. q.e.d.

Remark 3.4. In [5], the author present a hybrid extragradient iteration method for finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions of
equilibrium problems for a pseudomonotone and Lipschitz-type continuous bifunction. But in this
paper we consider a shrinking projection extragradient algorithm for finding a common element of
the set of common fixed points of a finite family of asymptotically nonexpansive mappings and a
generalized nonexpansive set- valued mapping and the set of solutions of equilibrium problem for
pseudomonotone and Lipschitz-type continuous bifunctions.
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